Aurora is on version 2.5.0 C#, available at the Aurora Forums.

Contact Erik on the forum for a wiki account.

Engine

From AuroraWiki
Revision as of 15:51, 19 February 2016 by Mor (talk | contribs) (added info, image and merged subsections)
Jump to navigation Jump to search
Setting background tech parameters

The engine is ship propulsion system that allow interplanetary travel. Engines propel the ship by burning fuel reserves. Platform without engines or Ships with damaged engines will be unable to move unless towed.

Overview

An engine is an absolute necessity for any ship that wishes to travel faster than 1km/s. Any number of engines can be mounted on a ship, although only one variety of engine may be mounted per ship. Commercial-engined ships tend to be slower than their military engined counterparts. This is offset by a much better fuel efficiency and no maintenance failures. In effect, commercial engines are trading a high maximum speed for fuel economy and low running costs.

The total power output from a ship's engines will determine the speed of the ship. Speed is one of the most important aspects of a ship. Superior speed means higher capacity per time for cargo ships, and a battle fleet with higher speed has a significant advantage, able to dictate the range of the engagement, intercept the other force, or disengage a hostile force.

All engines use fuel to operate, limiting cruising range, with high powered engines consuming exponentially more fuel than the default value. Range and speed are generally increased at each other's expense, or by building a significantly larger and more resource-hungry ship. As you research fuel Consumption tech, you can design engines that will use less fuel for the same power output.

Engines create a thermal signature, one that can be detected by Thermal Sensors, so having high-powered or numerous engines on a spy ship is not advisable. By dropping a ships speed or by designing engines with Thermal Reduction, a ship's thermal signature can be reduced.

Background Tech

Engine Technology determines the power output per HC (thrust:weight ratio, essentially) of the engine. Conventional empires start with the Conventional Engine technology, in able to represent pre-TNE engines pushing around hulls constructed from TNE materials. Conventional engines have a base output of 1 unit. One unit of engine power are the amount of power required to propel 50 tons (1 HS) against the Trans-Newtonian drag at 1000 km/s (this unit is also known as a EPU (engine power unit)). Therefore, for a ship or missile

Speed = (Total Engine Power / Total Class Size in HS) * 1000 km/s

You are obviously going to be using the best tech, which is automatically selected.

Technology Conventional Nuclear Thermal Nuclear Pulse Ion Magneto-Plasma Internal Confinement Fusion Magnetic Confinement Fusion Inertial Confinement Fusion Solid-core Anti-matter Gas-core Anti-matter Plasma-core Anti-matter Beam Core Anti-matter Photonic
Power per HS 0.2 5 8 12 16 20 25 32 40 50 60 80 100
RP cost - 2,500 5,000 10,000 20,000 40,000 80,000 150,000 300,000 600,000 1,250,000 2,500,000 5,000,000

Power/Efficiency Modifiers allows for creating super-tuned or de-tuned engines, increasing output power at the cost of fuel efficiency or vice versa. Making these alterations carries with it an increased risk of engine explosion if the engine takes damaged, causing a secondary explosion.

Modifier 0.1 0.15 0.2 0.25 0.3 0.4 0.5 1 1.25 1.5 1.75 2 2.5 3
Fuel per EPH 0.00 0.01 0.02 0.03 0.05 0.1 0.18 1 1.75 2.76 4.05 5.66 9.88 15.59
RP cost 30,000 15,000 8,000 4,000 2,000 1,000 - - 1,000 2,000 4,000 8,000 15,000 30,000

Fuel Consumption determines the rate at which fuel is consumed. A ship running at its max speed consumes fuel (in litres) at a rate equal to its engine power every 10 hours, or fuel (in litres) equal to 2.4 times its engine power every day. A ship with one Conventional military engine (total power output: 1 EPU) consumes 2.4 litres of ReSor per day. If it had a fuel tank capable of carrying 50,000 litres (the standard fuel tank size), it could operate for 20833 days (about 58 years). If its max speed was 100 km/s, it could travel for 179 billion km before running out of fuel (about 15 round trips to Pluto).

Modifier 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.25 0.2 0.16 0.125 0.1
RP cost - 1,000 2,000 4,000 8,000 15,000 30,000 60,000 120,000 250,000 500,000 1,000,000 2,000,000

Thermal Reduction applies a reduction to the thermal signature generated by the engine. This makes it harder to be detected by Thermal sensors. Great for engines meant for stealth ships, at the cost of increased cost to research and build. The thermal signature for an engine is equal to its power output * its thermal reduction modifier. A 5% reduction to a 40 EPU engine would cause it to have a thermal signature of 38.

Signature (%) 100 75 50 35 25 16 12 8 6 4 3 2 1
RP cost - 1,500 3,000 6,000 12,000 25,000 50,000 100,000 200,000 400,000 750,000 1,500,000 2,500,000

Engine Size ranges between 1-50 HS. Fuel consumption is reduced by 1% per HS, and HTK is increased per 2 HS Larger engines are therefore more efficient and sturdy at the cost of being less flexible during ship design, less redundant during combat and more expensive to maintain per-unit.

An engine that is at least 25 HS and has a Power Modifier of x0.5 or less is considered a Commercial Engine, all other variants are Military. Military engines flag any ship they are on as military ships, and thus subject to maintenance failures and requiring overhaul.